Elektronik cihazlar devre teorisi elektronik cihazlar devre teorisi. Hanedan devrinden kalan. Get this from library elektronik elemanlar devre teorisi. Librarything cataloging and social networking site. Elektronik elemanlar devre teorisi pdf the initial canon 4200f wia driver copytrans contact activation code elektronik cihazlar devre teorisi. Download Elektronik elemanlar ve devre teorisi robert boylestad pdf: http://hml.cloudz.pw/download?file=elektronik+elemanlar+ve+devre+teorisi+robert+boylestad+pdf. Elektronik Elemanlar ve Devre Teorisi MEB Kitabı.pdf. Elektronik Elemanlar ve Devre Teorisi MEB Kitabı.pdf. 0 Comments Serial Key Kane And Lynch 2. Epub reader intermezzo sinfonico cavalleria rusticana pdf free shape memory metals pdf free le pouvoir de la conscience pdf free wedding planning checklist pdf free free pdf converter office. Blog Blog Gigabyte Ga-K8ns Manual. I've had it back less than a month, but I've run into another problem. I was on it as normal one night, playing games, on youtube, answering emails etc. The next morning, I booted up my PC and it got to the motherboard splash screen, but got no further. My computer will not post, I got no. DEvRE TEoRisi DERSi iqiN oNnnir. O ANALOG/DiGITAL DE,VRELER SISTEMLER VE VE Dr. Elektronik cihazlar ve devre teorisi pdf. Elektronik Elemanlar ve Devre Teorisi:. Elektronik Elemanlar ve Devre Teorisi pdf, elektronik elemanlar ve devre teorisi. Elektronik Elemanlar ve Devre Teorisi - Robert Boylesad, Louis Nashelsky - E-k.
Elektronik Elemanlar Ve Devre Teorisi Pdf Reader
<ul><li><p>X-BAND LOW PHASE NOISE MMIC VCO &HIGH POWER MMIC SPDT DESIGN</p><p>a thesis</p><p>submitted to the department of electrical and</p><p>electronics engineering</p><p>and the graduate school of engineering and science</p><p>of bilkent university</p><p>in partial fulfillment of the requirements</p><p>for the degree of</p><p>master of science</p><p>By</p><p>Sinan Osmanoglu</p><p>June, 2014</p></li><li><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Prof. Dr. Ekmel Ozbay(Advisor)</p><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Dr. Tark Reyhan(Co-Advisor)</p><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Prof. Dr. Yusuf Ziya Ider</p><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Prof. Dr. Atilla Aydnl</p><p>Approved for the Graduate School of Engineering and Science:</p><p>Prof. Dr. Levent OnuralDirector of the Graduate School</p><p>ii</p></li><li><p>ABSTRACT</p><p>X-BAND LOW PHASE NOISE MMIC VCO &HIGH POWER MMIC SPDT DESIGN</p><p>Sinan Osmanoglu</p><p>M.S. in Electrical and Electronics Engineering</p><p>Supervisor: Prof. Dr. Ekmel Ozbay & Dr. Tark Reyhan</p><p>June, 2014</p><p>Generally the tuning bandwidth (BW) of a VCO is smaller than the tuning BW</p><p>of the resonant circuit itself. Using proper components with right topology can</p><p>handle this problem. In order to overcome this problem and improve the tun-</p><p>ing BW of the VCO, common-base inductive feedback topology with Gallium</p><p>Arsenide (GaAs) Heterojunction Bipolar Transistor (HBT) is used and an opti-</p><p>mized topology for tank circuit is selected to minimize the effect of bandwidth</p><p>limiting components. Designed VCO with this topology achived -117 dBc/Hz at</p><p>1 MHz offset phase noise with 9-13 dBm output power between 8.8-11.4 GHz</p><p>band. Second part of the thesis composed of Single Pole Double Throw (SPDT)</p><p>RF Switch design. From mesa resistors to SPDT fabrication, everything is fab-</p><p>ricated using Bilkent University NANOTAM Gallium Nitride (GaN) on Silicon</p><p>Carbide (SiC) process. Switching HEMTs are fabricated to generate a model to</p><p>design SPDTs and the final design works between DC-12 GHz with less than 1.4</p><p>dB insertion loss (IL), -20 dB isolation and 14.5 dB return loss (RL) at worst</p><p>case. The power handling of the switches are better than 40 dBm at output with</p><p>0.2 dB compression, which is measured with continuous wave (CW) signal at 10</p><p>GHz.</p><p>Keywords: MMIC, VCO, Phase Noise, SPDT, GaAs, GaN, CPW, HEMT, HBT.</p><p>iii</p></li><li><p>OZET</p><p>X-BANT DUSUK FAZ GURULTULU VCO & YUKSEKGUCLU SPDT TASARIMI</p><p>Sinan Osmanoglu</p><p>Elektrik-Elektronik Muhendisligi, Yuksek Lisans</p><p>Tez Yoneticisi: Prof. Dr. Ekmel Ozbay & Dr. Tark Reyhan</p><p>Haziran, 2014</p><p>Dusuk faz gurultulu osilatorler resonator devresinin bant genisligi ile</p><p>karslastrldgnda genellikle daha dar bir banda sahiptirler. Dogru bir topoloji ve</p><p>uygun devre elemanlar ile bu sorun cozulebilmektedir. Galyum Arsenit (GaAs)</p><p>temelli HBT nin base ucuna bir bobin eklenerek elde edilen yap ile uygun bir</p><p>resonans devresi sayesinde bant genisligini kstlayan devre elemanlarnn etkisi en</p><p>aza indirilebilmektedir. Bu yap ile tasarlanan VCO ile 8.8-11.4 GHz aralgnda</p><p>9-13 dBm cks gucunde, 1 MHz ofsette -117 dBc/Hz faz gurultusu elde edilmistir.</p><p>Tezin ikinci ksm ise Single Pole Double Throw (SPDT) RF anahtar tasarmndan</p><p>olusmaktadr. Mesa direnclerinden SPDT uretimine kadar tum islemler Bilkent</p><p>Universitesi NANOTAM da Silikon Karbid (SiC) uzerine Galyum Nitrat (GaN)</p><p>islemi kullanlarak uretilmistir. Oncelikle anahtarlama transistorleri uretilerek</p><p>SPDT tasarm yapabilmek icin model ckarlmstr. Bu model ile uretilen anahtar</p><p>yaplar DC-12 GHz aralgnda 1.4 dB den az araya girme kayb (IL), -20 dB den</p><p>iyi yaltm ve en kotu durumda 14.5 dB geriye donus kayb ile calsabilmektedir.</p><p>Ayrca 10 GHz de surekli sinyal altnda 0.2 dB den az kompresyon ile 40 dBm</p><p>lik cks verebilmektedir.</p><p>Anahtar sozcukler : MMIC, VCO, Phase Noise, SPDT, GaAs, GaN, CPW,</p><p>HEMT, HBT.</p><p>iv</p></li><li><p>Acknowledgement</p><p>I would like to thank my advisor Dr. Tark Reyhan for the continuous support</p><p>of my study and research, for his patience, motivation, and immense knowledge.</p><p>His guidance helped me in all the time of research and writing of this thesis.</p><p>I would like to thank Prof. Dr. Ekmel Ozbay for his support and guidance in</p><p>the projects.</p><p>I would like to thank Dr. Ozlem Sen for her support in RF Switch project.</p><p>I would like to thank the rest of my thesis committee: Prof. Dr. Yusuf Ziya</p><p>Ider and Prof. Dr. Atilla Aydnl for being a part of my thesis committee.</p><p>I would also like to thank my family: my parents Gulbiye and Seyfi Osmanoglu</p><p>and my elder brother Kamuran Osmanoglu. They were always supporting me and</p><p>encouraging me with their best wishes.</p><p>v</p></li><li><p>Contents</p><p>1 Introduction 1</p><p>1.1 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 2</p><p>2 Background 3</p><p>2.1 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3</p><p>2.2 Thermal Noise and Noise Figure . . . . . . . . . . . . . . . . . . . 7</p><p>2.3 Flicker Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8</p><p>2.4 Phase Noise in Oscillators . . . . . . . . . . . . . . . . . . . . . . 9</p><p>2.4.1 Oscillator Basics . . . . . . . . . . . . . . . . . . . . . . . 9</p><p>2.5 Leeson Phase Noise Model . . . . . . . . . . . . . . . . . . . . . . 12</p><p>2.6 LC Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14</p><p>2.6.1 Loaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . . 16</p><p>2.6.2 Unloaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . 17</p><p>3 VCO Design 18</p><p>3.1 H01U-10 InGaP/GaAs HBT Process . . . . . . . . . . . . . . . . 20</p><p>vi</p></li><li><p>CONTENTS vii</p><p>3.1.1 HBT Transistor . . . . . . . . . . . . . . . . . . . . . . . . 21</p><p>3.2 Resonator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 22</p><p>3.2.1 Varactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22</p><p>3.2.2 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24</p><p>3.2.3 Resonator Test . . . . . . . . . . . . . . . . . . . . . . . . 26</p><p>3.3 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 29</p><p>3.4 Negative Resistance Generation . . . . . . . . . . . . . . . . . . . 30</p><p>3.5 Oscillation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33</p><p>3.5.1 Linear Techniques . . . . . . . . . . . . . . . . . . . . . . . 33</p><p>3.5.2 Non-Linear Technique . . . . . . . . . . . . . . . . . . . . 36</p><p>3.5.3 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . 38</p><p>3.5.4 Layout Generation and HB Simulations . . . . . . . . . . . 39</p><p>4 Phase Noise Measurement 42</p><p>4.1 Direct Measurement Technique . . . . . . . . . . . . . . . . . . . 42</p><p>4.2 Phase Detector Techniques . . . . . . . . . . . . . . . . . . . . . . 43</p><p>4.2.1 Phase Locked Loop (PLL) Method . . . . . . . . . . . . . 44</p><p>4.2.2 Delay Line Method . . . . . . . . . . . . . . . . . . . . . . 45</p><p>4.3 Cross-Correlation Technique . . . . . . . . . . . . . . . . . . . . . 45</p><p>5 RF Switch 47</p><p>5.1 SPST Switch Design Considerations . . . . . . . . . . . . . . . . . 48</p></li><li><p>CONTENTS viii</p><p>5.2 RF Switch Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 50</p><p>5.2.1 Switch Model . . . . . . . . . . . . . . . . . . . . . . . . . 51</p><p>5.3 Switch Power Handling . . . . . . . . . . . . . . . . . . . . . . . . 54</p><p>5.3.1 ON-state power handling . . . . . . . . . . . . . . . . . . . 54</p><p>5.3.2 OFF-state power handling . . . . . . . . . . . . . . . . . . 54</p><p>5.4 HEMT Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 55</p><p>5.5 SPST Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57</p><p>5.6 SPDT Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66</p><p>6 Conclusion 69</p><p>A Varactor 74</p></li><li><p>List of Figures</p><p>2.1 Long-term (left) and short-term (right) stability . . . . . . . . . . 4</p><p>2.2 Ideal sine wave (left), Frequency spectrum (right) . . . . . . . . . 5</p><p>2.3 Real-world sine wave . . . . . . . . . . . . . . . . . . . . . . . . . 5</p><p>2.4 Single Sideband Phase Noise . . . . . . . . . . . . . . . . . . . . . 6</p><p>2.5 Coversion of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 8</p><p>2.6 Basic Oscillator Block Diagram . . . . . . . . . . . . . . . . . . . 9</p><p>2.7 Parallel Resonance Circuit . . . . . . . . . . . . . . . . . . . . . . 10</p><p>2.8 Normalized bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 11</p><p>2.9 Model of an oscillator for noise analysis . . . . . . . . . . . . . . . 12</p><p>2.10 An example phase noise plot for an oscillator . . . . . . . . . . . . 14</p><p>2.11 Series (on the left) and parallel (on the right) resonators . . . . . 14</p><p>2.12 Response of series and parallel resonators . . . . . . . . . . . . . . 15</p><p>2.13 td and QL of both series and parallel resonators (Port impedances</p><p>are scaled by 1000, 50e3 for parallel and 50e-3 for series) . . . 17</p><p>3.1 Oscillator Design Diagram . . . . . . . . . . . . . . . . . . . . . . 19</p><p>ix</p></li><li><p>LIST OF FIGURES x</p><p>3.2 Oscillator Design Diagram . . . . . . . . . . . . . . . . . . . . . . 20</p><p>3.3 HBT Representation . . . . . . . . . . . . . . . . . . . . . . . . . 21</p><p>3.4 Dynamic load line superposed on IV curve . . . . . . . . . . . . . 21</p><p>3.5 Beta vs. Base Current . . . . . . . . . . . . . . . . . . . . . . . . 21</p><p>3.6 ft vs. Collector Current (left), fmax vs. Collector Current (right) 22</p><p>3.7 PN B/C Junction Diodes with fingers symbol on the left and layout</p><p>on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22</p><p>3.8 Varactor test circuit on the lest and Capacitance vs Freq. on the left 23</p><p>3.9 Varactor Q vs Freq. . . . . . . . . . . . . . . . . . . . . . . . . . . 23</p><p>3.10 Inductor symbol on the lest and layout on the right . . . . . . . . 24</p><p>3.11 Inductor test structure . . . . . . . . . . . . . . . . . . . . . . . . 25</p><p>3.12 Inductor test results . . . . . . . . . . . . . . . . . . . . . . . . . 25</p><p>3.13 Resonator test configuration . . . . . . . . . . . . . . . . . . . . . 26</p><p>3.14 Resonator response . . . . . . . . . . . . . . . . . . . . . . . . . . 27</p><p>3.15 Unloaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27</p><p>3.16 Loaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28</p><p>3.17 Loaded Q and Resonance Freq. vs Tuning Voltage . . . . . . . . . 28</p><p>3.18 (a) Common Emitter (CE), (b) Common Base (CB), (c) Common</p><p>Collector (CC) Configurations . . . . . . . . . . . . . . . . . . . . 29</p><p>3.19 Stability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30</p><p>3.20 Stability Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31</p></li><li><p>LIST OF FIGURES xi</p><p>3.21 S11 vs Feedback Inductance . . . . . . . . . . . . . . . . . . . . . 32</p><p>3.22 Linear test with ideal transformer . . . . . . . . . . . . . . . . . . 33</p><p>3.23 Small-Signal oscillation condition . . . . . . . . . . . . . . . . . . 34</p><p>3.24 Linear test with OscTest setup . . . . . . . . . . . . . . . . . . . . 35</p><p>3.25 Linear test with OscTest result . . . . . . . . . . . . . . . . . . . 35</p><p>3.26 Harmonic-Balance test setup . . . . . . . . . . . . . . . . . . . . . 36</p><p>3.27 Harmonic-Balance test results . . . . . . . . . . . . . . . . . . . . 37</p><p>3.28 Output waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 38</p><p>3.29 Transient analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38</p><p>3.30 Layout (on the right) and Meshing (on the left) . . . . . . . . . . 39</p><p>3.31 CoSim test bench . . . . . . . . . . . . . . . . . . . . . . . . . . . 40</p><p>3.32 Harmonic-Balance test results (with EM) . . . . . . . . . . . . . . 41</p><p>4.1 Direct Measurement Technique . . . . . . . . . . . . . . . . . . . 43</p><p>4.2 Phase Detector Concept . . . . . . . . . . . . . . . . . . . . . . . 43</p><p>4.3 PLL Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44</p><p>4.4 Delay Line Discriminator Method . . . . . . . . . . . . . . . . . . 45</p><p>4.5 Cross-Correlation Method . . . . . . . . . . . . . . . . . . . . . . 46</p><p>5.1 Mesa Resistor photo-mask . . . . . . . . . . . . . . . . . . . . . . 48</p><p>5.2 Fabricated Mesa resistors . . . . . . . . . . . . . . . . . . . . . . . 49</p><p>5.3 Mesa Resistor Measurements . . . . . . . . . . . . . . . . . . . . . 49</p></li><li><p>LIST OF FIGURES xii</p><p>5.4 HEMT photo-mask (left), Fabricated HEMT (right) . . . . . . . . 50</p><p>5.5 HEMT representation . . . . . . . . . . . . . . . . . . . . . . . . . 51</p><p>5.6 SPDT configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 52</p><p>5.7 Equivalent SPDT model . . . . . . . . . . . . . . . . . . . . . . . 52</p><p>5.8 Switch model analysis . . . . . . . . . . . . . . . . . . . . . . . . 53</p><p>5.9 HEMT measurement configuration (gate grounded) . . . . . . . . 55</p><p>5.10 I-V of a HEMT (2x100um) . . . . . . . . . . . . . . . . . . . . . . 56</p><p>5.11 gm vs. gate voltage (2x100um) . . . . . . . . . . . . . . . . . . . . 57</p><p>5.12 Circuit topology for the Single-Pole Single-Throw switches . . . . 57</p><p>5.13 Photograph of a fabricated CPW SPST switch . . . . . . . . . . . 58</p><p>5.14 SPST1 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 59</p><p>5.15 SPST2 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 60</p><p>5.16 SPST3 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 61</p><p>5.17 SPST4 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 62</p><p>5.18 SPST5 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 63</p><p>5.19 Large-Signal Compression and Loss vs Input Power . . . . . . . . 64</p><p>5.20 SPDT Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66</p><p>5.21 EM simulation results . . . . . . . . . . . . . . . . . . . . . . . . 67</p><p>A.1 Varactor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74</p><p>A.2 Varactor Model (Detailed) . . . . . . . . . . . . . . . . . . . . . . 75</p></li><li><p>List of Tables</p><p>3.1 Summary of final design . . . . . . . . . . . . . . . . . . . . . . . 40</p><p>5.1 GaN switch HEMT circuit parameters . . . . . . . . . . . . . . . 56</p><p>5.2 Summary of Design Parameters . . . . . . . . . . . . . . . . . . . 58</p><p>5.3 SPST Measurement summary . . . . . . . . . . . . . . . . . . . . 65</p><p>5.4 Summary of SPDT design . . . . . . . . . . . . . . . . . . . . . . 68</p><p>6.1 Comparison Table of Recent VCOs in GaAs HBT . . . . . . . . . 71</p><p>6.2 Comparison Table of Recent SPDTs on GaN . . . . . . . . . . . 71</p><p>A.1 Varactor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 74</p><p>xiii</p></li><li><p>Chapter 1</p><p>Introduction</p><p>Any RF/Microwave system requires a signal source to operate. The quality of the</p><p>signal source is very important to process the received/transmitted data success-</p><p>fully. There are some properties of a signal source like linearity, stability, signal</p><p>purity, bandwidth, phase noise etc.</p><p>In a transceiver system, an RF switch which is a front-end component has</p><p>crucial importance. An RF switch has to be capable of switching high powers</p><p>at higher frequencies with low loss and high isolation. When system receives a</p><p>relatively low power signal, the loss of the RF switch is critical and isolation is</p><p>crucial when transmitting a high power signal to prevent damage to the receiver</p><p>part.</p><p>This t...</p></li></ul>
<ul><li><p>X-BAND LOW PHASE NOISE MMIC VCO &HIGH POWER MMIC SPDT DESIGN</p><p>a thesis</p><p>submitted to the department of electrical and</p><p>electronics engineering</p><p>and the graduate school of engineering and science</p><p>of bilkent university</p><p>in partial fulfillment of the requirements</p><p>for the degree of</p><p>master of science</p><p>By</p><p>Sinan Osmanoglu</p><p>June, 2014</p></li><li><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Prof. Dr. Ekmel Ozbay(Advisor)</p><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Dr. Tark Reyhan(Co-Advisor)</p><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Prof. Dr. Yusuf Ziya Ider</p><p>I certify that I have read this thesis and that in my opinion it is fully adequate,</p><p>in scope and in quality, as a thesis for the degree of Master of Science.</p><p>Prof. Dr. Atilla Aydnl</p><p>Approved for the Graduate School of Engineering and Science:</p><p>Prof. Dr. Levent OnuralDirector of the Graduate School</p><p>ii</p></li><li><p>ABSTRACT</p><p>X-BAND LOW PHASE NOISE MMIC VCO &HIGH POWER MMIC SPDT DESIGN</p><p>Sinan Osmanoglu</p><p>M.S. in Electrical and Electronics Engineering</p><p>Supervisor: Prof. Dr. Ekmel Ozbay & Dr. Tark Reyhan</p><p>June, 2014</p><p>Generally the tuning bandwidth (BW) of a VCO is smaller than the tuning BW</p><p>of the resonant circuit itself. Using proper components with right topology can</p><p>handle this problem. In order to overcome this problem and improve the tun-</p><p>ing BW of the VCO, common-base inductive feedback topology with Gallium</p><p>Arsenide (GaAs) Heterojunction Bipolar Transistor (HBT) is used and an opti-</p><p>mized topology for tank circuit is selected to minimize the effect of bandwidth</p><p>limiting components. Designed VCO with this topology achived -117 dBc/Hz at</p><p>1 MHz offset phase noise with 9-13 dBm output power between 8.8-11.4 GHz</p><p>band. Second part of the thesis composed of Single Pole Double Throw (SPDT)</p><p>RF Switch design. From mesa resistors to SPDT fabrication, everything is fab-</p><p>ricated using Bilkent University NANOTAM Gallium Nitride (GaN) on Silicon</p><p>Carbide (SiC) process. Switching HEMTs are fabricated to generate a model to</p><p>design SPDTs and the final design works between DC-12 GHz with less than 1.4</p><p>dB insertion loss (IL), -20 dB isolation and 14.5 dB return loss (RL) at worst</p><p>case. The power handling of the switches are better than 40 dBm at output with</p><p>0.2 dB compression, which is measured with continuous wave (CW) signal at 10</p><p>GHz.</p><p>Keywords: MMIC, VCO, Phase Noise, SPDT, GaAs, GaN, CPW, HEMT, HBT.</p><p>iii</p></li><li><p>OZET</p><p>X-BANT DUSUK FAZ GURULTULU VCO & YUKSEKGUCLU SPDT TASARIMI</p><p>Sinan Osmanoglu</p><p>Elektrik-Elektronik Muhendisligi, Yuksek Lisans</p><p>Tez Yoneticisi: Prof. Dr. Ekmel Ozbay & Dr. Tark Reyhan</p><p>Haziran, 2014</p><p>Dusuk faz gurultulu osilatorler resonator devresinin bant genisligi ile</p><p>karslastrldgnda genellikle daha dar bir banda sahiptirler. Dogru bir topoloji ve</p><p>uygun devre elemanlar ile bu sorun cozulebilmektedir. Galyum Arsenit (GaAs)</p><p>temelli HBT nin base ucuna bir bobin eklenerek elde edilen yap ile uygun bir</p><p>resonans devresi sayesinde bant genisligini kstlayan devre elemanlarnn etkisi en</p><p>aza indirilebilmektedir. Bu yap ile tasarlanan VCO ile 8.8-11.4 GHz aralgnda</p><p>9-13 dBm cks gucunde, 1 MHz ofsette -117 dBc/Hz faz gurultusu elde edilmistir.</p><p>Tezin ikinci ksm ise Single Pole Double Throw (SPDT) RF anahtar tasarmndan</p><p>olusmaktadr. Mesa direnclerinden SPDT uretimine kadar tum islemler Bilkent</p><p>Universitesi NANOTAM da Silikon Karbid (SiC) uzerine Galyum Nitrat (GaN)</p><p>islemi kullanlarak uretilmistir. Oncelikle anahtarlama transistorleri uretilerek</p><p>SPDT tasarm yapabilmek icin model ckarlmstr. Bu model ile uretilen anahtar</p><p>yaplar DC-12 GHz aralgnda 1.4 dB den az araya girme kayb (IL), -20 dB den</p><p>iyi yaltm ve en kotu durumda 14.5 dB geriye donus kayb ile calsabilmektedir.</p><p>Ayrca 10 GHz de surekli sinyal altnda 0.2 dB den az kompresyon ile 40 dBm</p><p>lik cks verebilmektedir.</p><p>Anahtar sozcukler : MMIC, VCO, Phase Noise, SPDT, GaAs, GaN, CPW,</p><p>HEMT, HBT.</p><p>iv</p></li><li><p>Acknowledgement</p><p>I would like to thank my advisor Dr. Tark Reyhan for the continuous support</p><p>of my study and research, for his patience, motivation, and immense knowledge.</p><p>His guidance helped me in all the time of research and writing of this thesis.</p><p>I would like to thank Prof. Dr. Ekmel Ozbay for his support and guidance in</p><p>the projects.</p><p>I would like to thank Dr. Ozlem Sen for her support in RF Switch project.</p><p>I would like to thank the rest of my thesis committee: Prof. Dr. Yusuf Ziya</p><p>Ider and Prof. Dr. Atilla Aydnl for being a part of my thesis committee.</p><p>I would also like to thank my family: my parents Gulbiye and Seyfi Osmanoglu</p><p>and my elder brother Kamuran Osmanoglu. They were always supporting me and</p><p>encouraging me with their best wishes.</p><p>v</p></li><li><p>Contents</p><p>1 Introduction 1</p><p>1.1 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . 2</p><p>2 Background 3</p><p>2.1 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3</p><p>2.2 Thermal Noise and Noise Figure . . . . . . . . . . . . . . . . . . . 7</p><p>2.3 Flicker Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8</p><p>2.4 Phase Noise in Oscillators . . . . . . . . . . . . . . . . . . . . . . 9</p><p>2.4.1 Oscillator Basics . . . . . . . . . . . . . . . . . . . . . . . 9</p><p>2.5 Leeson Phase Noise Model . . . . . . . . . . . . . . . . . . . . . . 12</p><p>2.6 LC Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14</p><p>2.6.1 Loaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . . 16</p><p>2.6.2 Unloaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . 17</p><p>3 VCO Design 18</p><p>3.1 H01U-10 InGaP/GaAs HBT Process . . . . . . . . . . . . . . . . 20</p><p>vi</p></li><li><p>CONTENTS vii</p><p>3.1.1 HBT Transistor . . . . . . . . . . . . . . . . . . . . . . . . 21</p><p>3.2 Resonator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 22</p><p>3.2.1 Varactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22</p><p>3.2.2 Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24</p><p>3.2.3 Resonator Test . . . . . . . . . . . . . . . . . . . . . . . . 26</p><p>3.3 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 29</p><p>3.4 Negative Resistance Generation . . . . . . . . . . . . . . . . . . . 30</p><p>3.5 Oscillation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33</p><p>3.5.1 Linear Techniques . . . . . . . . . . . . . . . . . . . . . . . 33</p><p>3.5.2 Non-Linear Technique . . . . . . . . . . . . . . . . . . . . 36</p><p>3.5.3 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . 38</p><p>3.5.4 Layout Generation and HB Simulations . . . . . . . . . . . 39</p><p>4 Phase Noise Measurement 42</p><p>4.1 Direct Measurement Technique . . . . . . . . . . . . . . . . . . . 42</p><p>4.2 Phase Detector Techniques . . . . . . . . . . . . . . . . . . . . . . 43</p><p>4.2.1 Phase Locked Loop (PLL) Method . . . . . . . . . . . . . 44</p><p>4.2.2 Delay Line Method . . . . . . . . . . . . . . . . . . . . . . 45</p><p>4.3 Cross-Correlation Technique . . . . . . . . . . . . . . . . . . . . . 45</p><p>5 RF Switch 47</p><p>5.1 SPST Switch Design Considerations . . . . . . . . . . . . . . . . . 48</p></li><li><p>CONTENTS viii</p><p>5.2 RF Switch Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 50</p><p>5.2.1 Switch Model . . . . . . . . . . . . . . . . . . . . . . . . . 51</p><p>5.3 Switch Power Handling . . . . . . . . . . . . . . . . . . . . . . . . 54</p><p>5.3.1 ON-state power handling . . . . . . . . . . . . . . . . . . . 54</p><p>5.3.2 OFF-state power handling . . . . . . . . . . . . . . . . . . 54</p><p>5.4 HEMT Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 55</p><p>5.5 SPST Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57</p><p>5.6 SPDT Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66</p><p>6 Conclusion 69</p><p>A Varactor 74</p></li><li><p>List of Figures</p><p>2.1 Long-term (left) and short-term (right) stability . . . . . . . . . . 4</p><p>2.2 Ideal sine wave (left), Frequency spectrum (right) . . . . . . . . . 5</p><p>2.3 Real-world sine wave . . . . . . . . . . . . . . . . . . . . . . . . . 5</p><p>2.4 Single Sideband Phase Noise . . . . . . . . . . . . . . . . . . . . . 6</p><p>2.5 Coversion of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 8</p><p>2.6 Basic Oscillator Block Diagram . . . . . . . . . . . . . . . . . . . 9</p><p>2.7 Parallel Resonance Circuit . . . . . . . . . . . . . . . . . . . . . . 10</p><p>2.8 Normalized bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 11</p><p>2.9 Model of an oscillator for noise analysis . . . . . . . . . . . . . . . 12</p><p>2.10 An example phase noise plot for an oscillator . . . . . . . . . . . . 14</p><p>2.11 Series (on the left) and parallel (on the right) resonators . . . . . 14</p><p>2.12 Response of series and parallel resonators . . . . . . . . . . . . . . 15</p><p>2.13 td and QL of both series and parallel resonators (Port impedances</p><p>are scaled by 1000, 50e3 for parallel and 50e-3 for series) . . . 17</p><p>3.1 Oscillator Design Diagram . . . . . . . . . . . . . . . . . . . . . . 19</p><p>ix</p></li><li><p>LIST OF FIGURES x</p><p>3.2 Oscillator Design Diagram . . . . . . . . . . . . . . . . . . . . . . 20</p><p>3.3 HBT Representation . . . . . . . . . . . . . . . . . . . . . . . . . 21</p><p>3.4 Dynamic load line superposed on IV curve . . . . . . . . . . . . . 21</p><p>3.5 Beta vs. Base Current . . . . . . . . . . . . . . . . . . . . . . . . 21</p><p>3.6 ft vs. Collector Current (left), fmax vs. Collector Current (right) 22</p><p>3.7 PN B/C Junction Diodes with fingers symbol on the left and layout</p><p>on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22</p><p>3.8 Varactor test circuit on the lest and Capacitance vs Freq. on the left 23</p><p>3.9 Varactor Q vs Freq. . . . . . . . . . . . . . . . . . . . . . . . . . . 23</p><p>3.10 Inductor symbol on the lest and layout on the right . . . . . . . . 24</p><p>3.11 Inductor test structure . . . . . . . . . . . . . . . . . . . . . . . . 25</p><p>3.12 Inductor test results . . . . . . . . . . . . . . . . . . . . . . . . . 25</p><p>3.13 Resonator test configuration . . . . . . . . . . . . . . . . . . . . . 26</p><p>3.14 Resonator response . . . . . . . . . . . . . . . . . . . . . . . . . . 27</p><p>3.15 Unloaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27</p><p>3.16 Loaded Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28</p><p>3.17 Loaded Q and Resonance Freq. vs Tuning Voltage . . . . . . . . . 28</p><p>3.18 (a) Common Emitter (CE), (b) Common Base (CB), (c) Common</p><p>Collector (CC) Configurations . . . . . . . . . . . . . . . . . . . . 29</p><p>3.19 Stability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30</p><p>3.20 Stability Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31</p></li><li><p>LIST OF FIGURES xi</p><p>3.21 S11 vs Feedback Inductance . . . . . . . . . . . . . . . . . . . . . 32</p><p>3.22 Linear test with ideal transformer . . . . . . . . . . . . . . . . . . 33</p><p>3.23 Small-Signal oscillation condition . . . . . . . . . . . . . . . . . . 34</p><p>3.24 Linear test with OscTest setup . . . . . . . . . . . . . . . . . . . . 35</p><p>3.25 Linear test with OscTest result . . . . . . . . . . . . . . . . . . . 35</p><p>3.26 Harmonic-Balance test setup . . . . . . . . . . . . . . . . . . . . . 36</p><p>3.27 Harmonic-Balance test results . . . . . . . . . . . . . . . . . . . . 37</p><p>3.28 Output waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . 38</p><p>3.29 Transient analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 38</p><p>3.30 Layout (on the right) and Meshing (on the left) . . . . . . . . . . 39</p><p>3.31 CoSim test bench . . . . . . . . . . . . . . . . . . . . . . . . . . . 40</p><p>3.32 Harmonic-Balance test results (with EM) . . . . . . . . . . . . . . 41</p><p>4.1 Direct Measurement Technique . . . . . . . . . . . . . . . . . . . 43</p><p>4.2 Phase Detector Concept . . . . . . . . . . . . . . . . . . . . . . . 43</p><p>4.3 PLL Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44</p><p>4.4 Delay Line Discriminator Method . . . . . . . . . . . . . . . . . . 45</p><p>4.5 Cross-Correlation Method . . . . . . . . . . . . . . . . . . . . . . 46</p><p>5.1 Mesa Resistor photo-mask . . . . . . . . . . . . . . . . . . . . . . 48</p><p>5.2 Fabricated Mesa resistors . . . . . . . . . . . . . . . . . . . . . . . 49</p><p>5.3 Mesa Resistor Measurements . . . . . . . . . . . . . . . . . . . . . 49</p></li><li><p>LIST OF FIGURES xii</p><p>5.4 HEMT photo-mask (left), Fabricated HEMT (right) . . . . . . . . 50</p><p>5.5 HEMT representation . . . . . . . . . . . . . . . . . . . . . . . . . 51</p><p>5.6 SPDT configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 52</p><p>5.7 Equivalent SPDT model . . . . . . . . . . . . . . . . . . . . . . . 52</p><p>5.8 Switch model analysis . . . . . . . . . . . . . . . . . . . . . . . . 53</p><p>5.9 HEMT measurement configuration (gate grounded) . . . . . . . . 55</p><p>5.10 I-V of a HEMT (2x100um) . . . . . . . . . . . . . . . . . . . . . . 56</p><p>5.11 gm vs. gate voltage (2x100um) . . . . . . . . . . . . . . . . . . . . 57</p><p>5.12 Circuit topology for the Single-Pole Single-Throw switches . . . . 57</p><p>5.13 Photograph of a fabricated CPW SPST switch . . . . . . . . . . . 58</p><p>5.14 SPST1 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 59</p><p>5.15 SPST2 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 60</p><p>5.16 SPST3 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 61</p><p>5.17 SPST4 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 62</p><p>5.18 SPST5 S-parameters . . . . . . . . . . . . . . . . . . . . . . . . . 63</p><p>5.19 Large-Signal Compression and Loss vs Input Power . . . . . . . . 64</p><p>5.20 SPDT Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66</p><p>5.21 EM simulation results . . . . . . . . . . . . . . . . . . . . . . . . 67</p><p>A.1 Varactor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74</p><p>A.2 Varactor Model (Detailed) . . . . . . . . . . . . . . . . . . . . . . 75</p></li><li><p>List of Tables</p><p>3.1 Summary of final design . . . . . . . . . . . . . . . . . . . . . . . 40</p><p>5.1 GaN switch HEMT circuit parameters . . . . . . . . . . . . . . . 56</p><p>5.2 Summary of Design Parameters . . . . . . . . . . . . . . . . . . . 58</p><p>5.3 SPST Measurement summary . . . . . . . . . . . . . . . . . . . . 65</p><p>5.4 Summary of SPDT design . . . . . . . . . . . . . . . . . . . . . . 68</p><p>6.1 Comparison Table of Recent VCOs in GaAs HBT . . . . . . . . . 71</p><p>6.2 Comparison Table of Recent SPDTs on GaN . . . . . . . . . . . 71</p><p>A.1 Varactor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 74</p><p>xiii</p></li><li><p>Chapter 1</p><p>Introduction</p><p>Any RF/Microwave system requires a signal source to operate. The quality of the</p><p>signal source is very important to process the received/transmitted data success-</p><p>fully. There are some properties of a signal source like linearity, stability, signal</p><p>purity, bandwidth, phase noise etc.</p><p>In a transceiver system, an RF switch which is a front-end component has</p><p>crucial importance. An RF switch has to be capable of switching high powers</p><p>at higher frequencies with low loss and high isolation. When system receives a</p><p>relatively low power signal, the loss of the RF switch is critical and isolation is</p><p>crucial when transmitting a high power signal to prevent damage to the receiver</p><p>part.</p><p>This t...</p></li></ul>